Friday, 8 March 2019

Enciclopédia de quantitativo negociação estratégias


Negociação quantitativa O que é negociação quantitativa negociação quantitativa consiste em estratégias de negociação com base na análise quantitativa. Que se baseiam em cálculos matemáticos e número crunching para identificar oportunidades comerciais. Como o comércio quantitativo é geralmente usado por instituições financeiras e fundos de hedge. As transações são geralmente de grande porte e podem envolver a compra e venda de centenas de milhares de ações e outros títulos. No entanto, o comércio quantitativo está se tornando mais comumente usado por investidores individuais. BREAKING Down Quantitative Trading Preço e volume são duas das entradas de dados mais comuns utilizados na análise quantitativa como os principais inputs para modelos matemáticos. As técnicas de negociação quantitativas incluem o comércio de alta frequência. Negociação algorítmica e arbitragem estatística. Estas técnicas são rápido-fogo e têm tipicamente horizontes de investimento a curto prazo. Muitos comerciantes quantitativos estão mais familiarizados com ferramentas quantitativas, como médias móveis e osciladores. Compreender a negociação quantitativa Comerciantes quantitativos tirar proveito da tecnologia moderna, matemática ea disponibilidade de bancos de dados abrangentes para tomar decisões comerciais racionais. Os comerciantes quantitativos tomam uma técnica de negociação e criam um modelo usando matemática, e então desenvolvem um programa de computador que aplica o modelo aos dados históricos do mercado. O modelo é então testado e otimizado. Se forem obtidos resultados favoráveis, o sistema é então implementado em mercados em tempo real com capital real. A forma como funcionam os modelos quantitativos de negociação pode ser melhor descrita usando uma analogia. Considere um relatório meteorológico em que o meteorologista prevê uma chance de 90 de chuva enquanto o sol está brilhando. O meteorologista obtém essa conclusão contra-intuitiva coletando e analisando dados climáticos de sensores em toda a área. Uma análise quantitativa computadorizada revela padrões específicos nos dados. Quando esses padrões são comparados com os mesmos padrões revelados nos dados climáticos históricos (backtesting), e 90 em cada 100 vezes o resultado é chuva, então o meteorologista pode tirar a conclusão com confiança, daí a previsão de 90. Os comerciantes quantitativos aplicam este mesmo processo ao mercado financeiro para tomar decisões comerciais. Vantagens e Desvantagens da Negociação Quantitativa O objetivo da negociação é calcular a probabilidade ótima de executar um comércio rentável. Um comerciante típico pode efetivamente monitorar, analisar e tomar decisões de negociação em um número limitado de títulos antes que a quantidade de dados recebidos oprima o processo de tomada de decisão. O uso de técnicas de negociação quantitativas ilumina esse limite usando computadores para automatizar as decisões de monitoramento, análise e negociação. Superar a emoção é um dos problemas mais difundidos com a negociação. Seja medo ou ganância, ao negociar, a emoção serve apenas para sufocar o pensamento racional, que geralmente leva a perdas. Computadores e matemática não possuem emoções, portanto, o comércio quantitativo elimina esse problema. O comércio quantitativo tem seus problemas. Os mercados financeiros são algumas das entidades mais dinâmicas que existem. Portanto, os modelos de negociação quantitativos devem ser tão dinâmicos para serem consistentemente bem-sucedidos. Muitos comerciantes quantitativos desenvolvem modelos que são temporariamente lucrativos para a condição de mercado para a qual eles foram desenvolvidos, mas eles falham, em última instância, quando as condições de mercado mudam. Quantpedia - a enciclopédia de estratégias de negociação quantitativa Eu acho que este é um lugar adequado para contar sobre isso como espero Nosso site quantpedia pode ser útil para você. Estamos continuamente bulding banco de dados de estratégias de negociação quantitativa derivada dos trabalhos de pesquisa acadêmica. Nós lemos muitos documentos (de portais de pesquisa, revistas financeiras, universidades etc.), selecionamos as melhores e extraímos regras de negociação em linguagem simples, desempenho e características de risco e várias características descritivas (os instrumentos usados ​​para negociação, mercados negociados, período de backtest Comprimento etc.). Deixe-me saber que você tem alguma sugestão de melhoria. Apr 16, 2017, 10:54 pm Registrado em março de 2017 Eu escolhi um par de seus clientes ao acaso de seus sites nossos clientes pouco e contatou-los. Eles nunca ouviram falar de você. Im um pouco de um nome neste espaço eu mesmo assim eu sei o meu caminho ao redor. Você gostaria de nome alguns nomes para confirmação apenas no caso de ter havido um erroQuantitative Trading O que é Quantitative Trading Quantitative negociação consiste em estratégias de negociação com base em análise quantitativa. Que se baseiam em cálculos matemáticos e número crunching para identificar oportunidades comerciais. Como o comércio quantitativo é geralmente usado por instituições financeiras e fundos de hedge. As transações são geralmente de grande porte e podem envolver a compra e venda de centenas de milhares de ações e outros títulos. No entanto, o comércio quantitativo está se tornando mais comumente usado por investidores individuais. BREAKING Down Quantitative Trading Preço e volume são duas das entradas de dados mais comuns utilizados na análise quantitativa como os principais inputs para modelos matemáticos. As técnicas de negociação quantitativas incluem o comércio de alta frequência. Negociação algorítmica e arbitragem estatística. Estas técnicas são rápido-fogo e têm tipicamente horizontes de investimento a curto prazo. Muitos comerciantes quantitativos estão mais familiarizados com ferramentas quantitativas, como médias móveis e osciladores. Compreender a negociação quantitativa Comerciantes quantitativos tirar proveito da tecnologia moderna, matemática ea disponibilidade de bancos de dados abrangentes para tomar decisões comerciais racionais. Os comerciantes quantitativos tomam uma técnica de negociação e criam um modelo usando matemática, e então desenvolvem um programa de computador que aplica o modelo aos dados históricos do mercado. O modelo é então testado e otimizado. Se forem obtidos resultados favoráveis, o sistema é então implementado em mercados em tempo real com capital real. A forma como funcionam os modelos quantitativos de negociação pode ser melhor descrita usando uma analogia. Considere um relatório meteorológico em que o meteorologista prevê uma chance de 90 de chuva enquanto o sol está brilhando. O meteorologista obtém essa conclusão contra-intuitiva coletando e analisando dados climáticos de sensores em toda a área. Uma análise quantitativa computadorizada revela padrões específicos nos dados. Quando esses padrões são comparados com os mesmos padrões revelados nos dados climáticos históricos (backtesting), e 90 em cada 100 vezes o resultado é chuva, então o meteorologista pode tirar a conclusão com confiança, daí a previsão de 90. Os comerciantes quantitativos aplicam este mesmo processo ao mercado financeiro para tomar decisões comerciais. Vantagens e Desvantagens da Negociação Quantitativa O objetivo da negociação é calcular a probabilidade ótima de executar um comércio rentável. Um comerciante típico pode efetivamente monitorar, analisar e tomar decisões de negociação em um número limitado de títulos antes que a quantidade de dados recebidos oprima o processo de tomada de decisão. O uso de técnicas de negociação quantitativas ilumina esse limite usando computadores para automatizar as decisões de monitoramento, análise e negociação. Superar a emoção é um dos problemas mais difundidos com a negociação. Seja medo ou ganância, ao negociar, a emoção serve apenas para sufocar o pensamento racional, que geralmente leva a perdas. Computadores e matemática não possuem emoções, portanto, o comércio quantitativo elimina esse problema. O comércio quantitativo tem seus problemas. Os mercados financeiros são algumas das entidades mais dinâmicas que existem. Portanto, os modelos de negociação quantitativos devem ser tão dinâmicos para serem consistentemente bem-sucedidos. Muitos comerciantes quantitativos desenvolvem modelos que são temporariamente lucrativos para a condição de mercado para a qual eles foram desenvolvidos, mas eles falham, em última instância, quando as condições de mercado mudam. Guia de negociação quantitativa para este artigo Im indo para apresentá-lo a alguns dos conceitos básicos que acompanham um Sistema de comércio quantitativo de ponta a ponta. Este post esperamos servir duas audiências. O primeiro será indivíduos que tentam obter um emprego em um fundo como um comerciante quantitativo. O segundo serão os indivíduos que desejam tentar criar seu próprio negócio de negociação algorítmica de varejo. A negociação quantitativa é uma área extremamente sofisticada de finanças quantitativas. Pode levar uma quantidade significativa de tempo para obter o conhecimento necessário para passar uma entrevista ou construir suas próprias estratégias de negociação. Não só isso, mas requer uma extensa experiência em programação, pelo menos em uma linguagem como MATLAB, R ou Python. Contudo, à medida que a frequência de negociação da estratégia aumenta, os aspectos tecnológicos tornam-se muito mais relevantes. Assim, estar familiarizado com CC será de suma importância. Um sistema de negociação quantitativo consiste em quatro componentes principais: Identificação da Estratégia - Encontrar uma estratégia, explorando uma vantagem e decidir sobre a freqüência de negociação Backtesting Estratégia - Obtendo dados, analisando o desempenho da estratégia e removendo viéses Execution System - Ligação a uma corretora, automatizando a negociação e minimizando Custos de transação Gerenciamento de Risco - alocação de capital otimizada, a aposta critério de tamanhoKelly e psicologia de negociação Bem, comece por dar uma olhada em como identificar uma estratégia de negociação. Identificação da estratégia Todos os processos de negociação quantitativa começam com um período inicial de pesquisa. Este processo de pesquisa abrange encontrar uma estratégia, ver se a estratégia se enquadra em um portfólio de outras estratégias que você pode estar executando, obtendo todos os dados necessários para testar a estratégia e tentar otimizar a estratégia para maiores retornos e / ou menor risco. Você precisará considerar seus próprios requisitos de capital se estiver executando a estratégia como um comerciante varejista e como quaisquer custos de transação afetarão a estratégia. Ao contrário da crença popular é realmente bastante simples de encontrar estratégias rentáveis ​​através de várias fontes públicas. Os acadêmicos publicam regularmente resultados de negociação teóricos (embora na maior parte brutos dos custos de transação). Os blogs quantitativos das finanças discutirão estratégias detalhadamente. Revistas de comércio descreverão algumas das estratégias empregadas pelos fundos. Você pôde questionar porque os indivíduos e as empresas são afiados discutir suas estratégias rentáveis, especial quando sabem que outros que aglomeram o comércio podem parar a estratégia do trabalho no prazo. A razão reside no fato de que eles não costumam discutir os parâmetros exatos e métodos de ajuste que eles têm realizado. Estas otimizações são a chave para transformar uma estratégia relativamente medíocre em uma altamente rentável. Na verdade, uma das melhores maneiras de criar suas próprias estratégias únicas é encontrar métodos semelhantes e, em seguida, realizar o seu próprio processo de otimização. Aqui está uma pequena lista de lugares para começar a procurar idéias de estratégia: Muitas das estratégias que você vai olhar para cair nas categorias de média-reversão e trend-followingmomentum. Uma estratégia de reversão de média é aquela que tenta explorar o fato de que existe uma média de longo prazo em uma série de preços (como o spread entre dois ativos correlacionados) e que os desvios a curto prazo dessa média reverterão. Uma estratégia de dinamismo tenta explorar tanto a psicologia dos investidores quanto a estrutura de grandes fundos ao engatar uma tendência de mercado, que pode ganhar impulso em uma direção e seguir a tendência até que ela reverta. Outro aspecto extremamente importante do comércio quantitativo é a freqüência da estratégia de negociação. Negociação de baixa freqüência (LFT) geralmente se refere a qualquer estratégia que detém ativos mais do que um dia de negociação. Correspondentemente, a negociação de alta freqüência (HFT) geralmente se refere a uma estratégia que detém ativos intraday. Ultra-high frequency trading (UHFT) refere-se a estratégias que mantêm ativos na ordem de segundos e milissegundos. Como um praticante de varejo HFT e UHFT são certamente possível, mas apenas com conhecimento detalhado da pilha de tecnologia de negociação e dinâmica livro de pedidos. Nós não vamos discutir estes aspectos em grande medida neste artigo introdutório. Uma vez que uma estratégia, ou conjunto de estratégias, foi identificado, agora precisa ser testado para rentabilidade em dados históricos. Esse é o domínio do backtesting. Backtesting da estratégia O objetivo do backtesting é fornecer evidências de que a estratégia identificada através do processo acima é rentável quando aplicada a dados históricos e fora da amostra. Isso define a expectativa de como a estratégia irá funcionar no mundo real. No entanto, backtesting não é uma garantia de sucesso, por várias razões. É talvez a área mais sutil de negociação quantitativa, uma vez que implica vieses numerosos, que devem ser cuidadosamente considerados e eliminados, tanto quanto possível. Discutiremos os tipos comuns de viés, incluindo o viés prospectivo. Viés de sobrevivência e viés de otimização (também conhecido como viés de snooping de dados). Outras áreas de importância dentro de backtesting incluem disponibilidade e limpeza de dados históricos, factoring em custos de transação realistas e decidir sobre uma robusta plataforma de backtesting. Bem discutir os custos de transação ainda mais na seção Execution Systems abaixo. Uma vez que uma estratégia foi identificada, é necessário obter os dados históricos através dos quais para realizar testes e, talvez, refinamento. Há um número significativo de fornecedores de dados em todas as classes de ativos. Os seus custos geralmente variam em função da qualidade, profundidade e actualidade dos dados. O ponto de partida tradicional para comerciantes começantes do princípio (pelo menos no nível de varejo) é usar o jogo de dados livre de Finanças de Yahoo. Eu não vou me debruçar demais sobre os provedores, mas gostaria de me concentrar nas questões gerais ao lidar com conjuntos de dados históricos. As principais preocupações com dados históricos incluem a precisão de limpeza, viés de sobrevivência e ajuste para ações corporativas, tais como dividendos e divisões de ações: A precisão diz respeito à qualidade geral dos dados - se ele contém quaisquer erros. Erros às vezes podem ser fáceis de identificar, como com um filtro de pico. Que selecionará pontos incorretos em dados de séries de tempo e corrigirá para eles. Em outros momentos, eles podem ser muito difíceis de detectar. Muitas vezes é necessário ter dois ou mais provedores e, em seguida, verificar todos os seus dados uns contra os outros. O viés de sobrevivência é muitas vezes uma característica de conjuntos de dados gratuitos ou baratos. Um conjunto de dados com viés de sobrevivência significa que ele não contém ativos que não são mais comerciais. No caso de acções, isto significa ações de delistedbankrupt. Esse viés significa que qualquer estratégia de negociação de ações testada em um desses conjuntos de dados provavelmente funcionará melhor do que no mundo real, já que os vencedores históricos já foram pré-selecionados. As ações corporativas incluem atividades logísticas realizadas pela empresa que geralmente causam uma mudança de função no preço bruto, que não deve ser incluída no cálculo dos retornos do preço. Os ajustes para dividendos e divisões de ações são os culpados comuns. Um processo conhecido como ajuste posterior é necessário para ser realizado em cada uma dessas ações. Deve-se ter muito cuidado para não confundir um grupamento de ações com um verdadeiro ajuste de retorno. Muitos comerciantes têm sido pegos por uma ação corporativa Para realizar um backtest procedimento é necessário usar uma plataforma de software. Você tem a escolha entre software de backtest dedicado, como Tradestation, uma plataforma numérica como o Excel ou MATLAB ou uma implementação personalizada completa em uma linguagem de programação como Python ou C. Eu não vou morar demais em Tradestation (ou similar), Excel ou MATLAB, como eu acredito em criar uma pilha inteira da tecnologia interna (pelas razões esboçadas abaixo). Um dos benefícios de fazer isso é que o software de backtest e o sistema de execução podem ser bem integrados, mesmo com estratégias estatísticas extremamente avançadas. Para estratégias HFT, em particular, é essencial usar uma implementação personalizada. Quando backtesting um sistema um deve ser capaz de quantificar o quão bem ele está realizando. As métricas padrão da indústria para estratégias quantitativas são a redução máxima ea Taxa de Sharpe. A descida máxima caracteriza a maior queda pico-a-minucioso na curva de equidade da conta durante um determinado período de tempo (geralmente anual). Isso é mais freqüentemente citado como uma porcentagem. As estratégias LFT tendem a ter maiores reduções do que as estratégias HFT, devido a uma série de fatores estatísticos. Um backtest histórico mostrará o drawdown máximo passado, que é um bom guia para o desempenho de drawdown futuro da estratégia. A segunda medição é a Relação de Sharpe, que é definida heuristicamente como a média dos retornos excedentes dividida pelo desvio padrão desses retornos excedentes. Aqui, os retornos excedentes referem-se ao retorno da estratégia acima de um ponto de referência pré-determinado. Como o SP500 ou um Tesouro de 3 meses. Observe que o retorno anualizado não é uma medida normalmente utilizada, pois não leva em conta a volatilidade da estratégia (ao contrário do Índice de Sharpe). Uma vez que uma estratégia tem sido backtested e é considerado livre de preconceitos (na medida do possível), com um bom Sharpe e minimizado drawdowns, é hora de construir um sistema de execução. Sistemas de Execução Um sistema de execução é o meio pelo qual a lista de negócios gerados pela estratégia são enviados e executados pelo corretor. Apesar do fato de que a geração comercial pode ser semi - ou mesmo totalmente automatizada, o mecanismo de execução pode ser manual, semi-manual (ou seja, um clique) ou totalmente automatizado. Para estratégias LFT, técnicas manuais e semi-manuais são comuns. Para as estratégias de HFT é necessário criar um mecanismo de execução totalmente automatizado, que muitas vezes será fortemente associado com o gerador de comércio (devido à interdependência de estratégia e tecnologia). As principais considerações ao criar um sistema de execução são a interface para a corretora. Minimização dos custos de transação (incluindo comissão, deslizamento e spread) e divergência de desempenho do sistema ao vivo de desempenho backtestado. Há muitas maneiras de interagir com uma corretora. Eles variam de chamar seu corretor no telefone direto para um totalmente automatizado de alto desempenho Application Programming Interface (API). Idealmente, você deseja automatizar a execução de seus negócios, tanto quanto possível. Isso libera você para se concentrar em mais pesquisas, bem como permitir que você execute várias estratégias ou mesmo estratégias de maior freqüência (na verdade, HFT é essencialmente impossível sem a execução automatizada). O software de backtesting comum descrito acima, como MATLAB, Excel e Tradestation são bons para menor frequência, estratégias mais simples. No entanto, será necessário construir um sistema de execução interno escrito em uma linguagem de alto desempenho, como C, a fim de fazer qualquer HFT real. Como uma anedota, no fundo que eu costumava ser empregado em, tivemos um loop de negociação de 10 minutos, onde iria baixar novos dados de mercado a cada 10 minutos e, em seguida, executar comércios com base nessa informação no mesmo período de tempo. Isso foi usando um script Python otimizado. Para qualquer coisa que se aproxima de minutos ou de dados de segunda freqüência, eu acredito CC seria mais ideal. Em um fundo maior, muitas vezes não é o domínio do comerciante quant para otimizar a execução. No entanto, em pequenas lojas ou empresas HFT, os comerciantes são os executores e, portanto, um conjunto de habilidades muito mais amplo é muitas vezes desejável. Tenha isso em mente se você deseja ser empregado por um fundo. Suas habilidades de programação serão tão importantes, se não mais, do que suas estatísticas e talentos econométricos Outra questão importante que cai sob a bandeira da execução é a de minimização de custos de transação. Geralmente, existem três componentes para os custos de transação: Comissões (ou impostos), que são as taxas cobradas pela corretora, pela bolsa e pela derrogação da SEC (ou órgão regulador governamental semelhante), que é a diferença entre o que você pretendia que sua ordem fosse Preenchido em relação ao que foi realmente preenchido no spread, que é a diferença entre o preço bidask do título negociado. Observe que o spread não é constante e é dependente da liquidez atual (ou seja, disponibilidade de ordens de compra) no mercado. Os custos de transação podem fazer a diferença entre uma estratégia extremamente lucrativa com uma boa relação de Sharpe e uma estratégia extremamente desprotegida com uma proporção de Sharpe terrível. Pode ser um desafio para prever corretamente os custos de transação de um backtest. Dependendo da frequência da estratégia, você precisará acessar dados históricos de troca, que incluirão dados de tick para os preços de bidask. Equipes inteiras de quants são dedicadas à otimização da execução nos fundos maiores, por estas razões. Considere o cenário em que um fundo precisa descarregar uma quantidade substancial de negócios (dos quais as razões para fazê-lo são muitas e variadas). Ao lançar tantas ações para o mercado, elas rapidamente diminuirão o preço e poderão não obter uma execução ótima. Daí os algoritmos que gotejam ordens de alimentação para o mercado existem, embora então o fundo corre o risco de derrapagem. Além disso, outras estratégias atacam essas necessidades e podem explorar as ineficiências. Este é o domínio da arbitragem de estrutura de fundo. A grande questão final para os sistemas de execução diz respeito à divergência do desempenho da estratégia com o desempenho testado. Isso pode acontecer por várias razões. Nós já discutimos o viés prospectivo eo viés de otimização em profundidade, ao considerar backtests. No entanto, algumas estratégias não tornam mais fácil testar esses vieses antes da implantação. Isto ocorre em HFT mais predominantemente. Pode haver bugs no sistema de execução, bem como a própria estratégia de negociação que não aparecem em um backtest, mas mostrar-se na negociação ao vivo. O mercado pode ter sido sujeito a uma mudança de regime subseqüente à implantação de sua estratégia. Novos ambientes regulatórios, a mudança do sentimento dos investidores e os fenômenos macroeconômicos podem levar a divergências na forma como o mercado se comporta e, portanto, a rentabilidade de sua estratégia. Gestão de Risco A peça final para o quebra-cabeça negociação quantitativa é o processo de gestão de risco. Risco inclui todos os preconceitos anteriores que discutimos. Ele inclui o risco de tecnologia, tais como servidores co-localizado na troca de repente desenvolvendo um mau funcionamento do disco rígido. Inclui o risco da corretora, tal como o corretor que torna-se falido (não tão louco como soa, dado o susto recente com MF global). Em suma, abrange quase tudo o que poderia interferir com a execução de negociação, de que há muitas fontes. Livros inteiros são dedicados à gestão de risco para estratégias quantitativas assim que eu wontt tentativa de elucidate em todas as fontes possíveis do risco aqui. A gestão de risco também engloba o que é conhecido como alocação de capital ótima. Que é um ramo da teoria da carteira. Este é o meio pelo qual o capital é alocado para um conjunto de diferentes estratégias e para os negócios dentro dessas estratégias. É uma área complexa e depende de algumas matemáticas não-triviais. O padrão da indústria, através do qual a otimização da alocação de capital e alavancagem das estratégias estão relacionadas, é chamado de critério de Kelly. Uma vez que este é um artigo introdutório, eu não ficarei no seu cálculo. O critério de Kelly faz algumas suposições sobre a natureza estatística dos retornos, que muitas vezes não são verdadeiros nos mercados financeiros, de modo que os comerciantes são frequentemente conservadores quando se trata da implementação. Outro componente chave do gerenciamento de risco é lidar com o perfil psicológico próprio. Há muitos preconceitos cognitivos que podem fluir para a negociação. Embora isso seja reconhecidamente menos problemático com negociação algorítmica se a estratégia é deixada sozinho Um preconceito comum é que a aversão perda, onde uma posição perdedora não será encerrada devido à dor de ter que perceber uma perda. Similarmente, os lucros podem ser tomados demasiado cedo porque o medo de perder um lucro já ganhado pode ser demasiado grande. Outro viés comum é conhecido como viés de recência. Isto manifesta-se quando os comerciantes colocam demasiada ênfase em eventos recentes e não a longo prazo. Então, claro, há o par clássico de preconceitos emocionais - medo e ganância. Estes podem muitas vezes levar a sub ou excesso de alavancagem, o que pode causar blow-up (ou seja, o título da conta de equidade para zero ou pior) ou lucros reduzidos. Como pode ser visto, o comércio quantitativo é uma área extremamente complexa, embora muito interessante, de finanças quantitativas. Eu literalmente arranhado a superfície do tópico neste artigo e já está ficando bastante longa livros inteiros e artigos foram escritos sobre questões que eu só deu uma frase ou duas para. Por essa razão, antes de aplicar para empregos quantitativos de negociação de fundos, é necessário realizar uma quantidade significativa de estudo de base. No mínimo, você precisará de um extenso histórico em estatística e econometria, com muita experiência na implementação, através de uma linguagem de programação como MATLAB, Python ou R. Para estratégias mais sofisticadas no final de freqüência mais alta, seu conjunto de habilidades é provável Para incluir modificação do kernel do Linux, CC, programação de montagem e otimização de latência de rede. Se você estiver interessado em tentar criar suas próprias estratégias de negociação algorítmica, minha primeira sugestão seria ficar bom em programação. Minha preferência é construir o máximo de dados grabber, backtestter estratégia e sistema de execução por si mesmo como possível. Se o seu próprio capital está na linha, wouldnt você dormir melhor à noite sabendo que você testou plenamente o seu sistema e estão cientes de suas armadilhas e questões específicas Outsourcing isso para um fornecedor, enquanto potencialmente economizando tempo no curto prazo, poderia ser extremamente Caro a longo prazo. Apenas começando com o comércio quantitativo

No comments:

Post a Comment